Graph Transformer for Graph-to-Sequence Learning
نویسندگان
چکیده
منابع مشابه
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks
Celebrated Sequence to Sequence learning (Seq2Seq) and its fruitful variants are powerful models to achieve excellent performance on the tasks that map sequences to sequences. However, these are many machine learning tasks with inputs naturally represented in a form of graphs, which imposes significant challenges to existing Seq2Seq models for lossless conversion from its graph form to the sequ...
متن کاملReading checks with multilayer graph transformer networks
Yann Le Cun L eon Bottou Yoshua Bengio Speech and Image Processing Services Research Lab AT&T Labs, 101 Crawfords Corner Road, Holmdel, NJ 07733, USA [email protected] ABSTRACT We propose a new machine learning paradigm called Multilayer Graph Transformer Network that extends the applicability of gradient-based learning algorithms to systems composed of modules that take graphs as input and...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولLine graphs associated to the maximal graph
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
متن کاملSequence Graph Transform (SGT)
A ubiquitous presence of sequence data across fields, like, web, healthcare, bioinformatics, text mining, etc., has made sequence mining a vital research area. However, sequence mining is particularly challenging because of absence of an accurate and fast approach to find (dis)similarity between sequences. As a measure of (dis)similarity, mainstream data mining methods like k-means, kNN, regres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i05.6243